
Week 8 - Friday



 What did we talk about last time?
 Open addressing
 Linear probing
 Quadratic probing
 Double hashing

 Chaining
 Started (chaining) hash table implementation













 We can define a symbol table ADT with a few essential operations:
 put(Key key, Value value)

▪ Put the key-value pair into the table
 get(Key key):

▪ Retrieve the value associated with key
 delete(Key key)

▪ Remove the value associated with key
 contains(Key key)

▪ See if the table contains a key
 isEmpty()
 size()

 It's also useful to be able to iterate over all keys



public class HashTable {
private int size = 0;
private int power = 10;
private Node[] table = new Node[1 << power];

private static class Node {
public int key;
public Object value;
public Node next;

}
…

}



 It's useful to have a function that finds the appropriate hash 
value

 Take the input integer and swap the low order 16 bits and the 
high order 16 bits (in case the number is small)

 Square the number
 Use shifting to get the middle power bits

private int hash(int key)



 If the hash table contains the given key, return true
 Otherwise return false

public boolean contains(int key)



 Return the object with the given key
 If none found, return null

public Object get(int key)



 If the load factor is above 0.75, double the  capacity of the 
hash table, rehashing all current elements

 Then, try to add the given key and value
 If the key already exists, update its value and return false
 Otherwise add the new key and value and return true

public boolean put(int key, Object value)





 Recall that the symbol table ADT is sometimes called a map
 Both Java and C++ use the name map for the symbol table 

classes in their standard libraries
 Python calls it a dictionary (and supports it in the language, 

not just in libraries)



 We've been working so long on trees and hash 
tables, we might have forgotten what a symbol 
table is for:

 Anything you can imagine storing as data with 
two columns, a key and a value

 In this way you can look up the weight of anyone
 However, the keys must be unique
 Abdul and Carmen might weigh the same, but Abdul 

cannot weigh two different values
 There are multimaps in which a single key can be 

mapped to multiple values
 But they are used much less often

Name 
(Key)

Weight
(Value)

Abdul 210

Bai Li 145

Carmen 105

Deepak 175

Erica 205



 The Java interface for maps is, unsurprisingly, Map<K,V>
 K is the type of the key
 V is the type of the value
 Yes, it's a container with two generic types

 Any Java class that implements this interface can do the 
important things that you need for a map
 get(Object key)
 containsKey(Object key)
 put(K key, V value)



 Because the Java gods love us, they provided two main 
implementations of the Map interface

 HashMap<K,V>
 Hash table implementation
 To be useful, type K must have a meaningful hashCode()method

 TreeMap<K,V>
 Balanced binary search tree implementation
 To work, type Kmust implement the compareTo()method
 Or you can supply a comparator when you create the TreeMap



 Let's see some code to keep track of some people's favorite 
numbers

Map<String,Integer> favorites = new TreeMap<>();

favorites.put("John", 42); // Autoboxes int value
favorites.put("Paul", 101);
favorites.put("George", 13);
favorites.put("Ringo", 7);
if (favorites.containsKey("George")) {

System.out.println(favorites.get("George"));
}



 Java also provides an interface for sets
 A set is like a map without values (only keys)
 All we care about is storing an unordered collection of things
 The Java interface for sets is Set<E>
 E is the type of objects being stored

 Any Java class that implements this interface can do the 
important things that you need for a set
 add(E element)
 contains(Object object)







 Timing comparison of hash tables and trees
 Graphs
 Graph representations



 Start Project 3
 Work on Assignment 4
 Read 4.1
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