
Week 8 - Friday

 What did we talk about last time?
 Open addressing
 Linear probing
 Quadratic probing
 Double hashing

 Chaining
 Started (chaining) hash table implementation

 We can define a symbol table ADT with a few essential operations:
 put(Key key, Value value)

▪ Put the key-value pair into the table
 get(Key key):

▪ Retrieve the value associated with key
 delete(Key key)

▪ Remove the value associated with key
 contains(Key key)

▪ See if the table contains a key
 isEmpty()
 size()

 It's also useful to be able to iterate over all keys

public class HashTable {
private int size = 0;
private int power = 10;
private Node[] table = new Node[1 << power];

private static class Node {
public int key;
public Object value;
public Node next;

}
…

}

 It's useful to have a function that finds the appropriate hash
value

 Take the input integer and swap the low order 16 bits and the
high order 16 bits (in case the number is small)

 Square the number
 Use shifting to get the middle power bits

private int hash(int key)

 If the hash table contains the given key, return true
 Otherwise return false

public boolean contains(int key)

 Return the object with the given key
 If none found, return null

public Object get(int key)

 If the load factor is above 0.75, double the capacity of the
hash table, rehashing all current elements

 Then, try to add the given key and value
 If the key already exists, update its value and return false
 Otherwise add the new key and value and return true

public boolean put(int key, Object value)

 Recall that the symbol table ADT is sometimes called a map
 Both Java and C++ use the name map for the symbol table

classes in their standard libraries
 Python calls it a dictionary (and supports it in the language,

not just in libraries)

 We've been working so long on trees and hash
tables, we might have forgotten what a symbol
table is for:

 Anything you can imagine storing as data with
two columns, a key and a value

 In this way you can look up the weight of anyone
 However, the keys must be unique
 Abdul and Carmen might weigh the same, but Abdul

cannot weigh two different values
 There are multimaps in which a single key can be

mapped to multiple values
 But they are used much less often

Name
(Key)

Weight
(Value)

Abdul 210

Bai Li 145

Carmen 105

Deepak 175

Erica 205

 The Java interface for maps is, unsurprisingly, Map<K,V>
 K is the type of the key
 V is the type of the value
 Yes, it's a container with two generic types

 Any Java class that implements this interface can do the
important things that you need for a map
 get(Object key)
 containsKey(Object key)
 put(K key, V value)

 Because the Java gods love us, they provided two main
implementations of the Map interface

 HashMap<K,V>
 Hash table implementation
 To be useful, type K must have a meaningful hashCode()method

 TreeMap<K,V>
 Balanced binary search tree implementation
 To work, type Kmust implement the compareTo()method
 Or you can supply a comparator when you create the TreeMap

 Let's see some code to keep track of some people's favorite
numbers

Map<String,Integer> favorites = new TreeMap<>();

favorites.put("John", 42); // Autoboxes int value
favorites.put("Paul", 101);
favorites.put("George", 13);
favorites.put("Ringo", 7);
if (favorites.containsKey("George")) {

System.out.println(favorites.get("George"));
}

 Java also provides an interface for sets
 A set is like a map without values (only keys)
 All we care about is storing an unordered collection of things
 The Java interface for sets is Set<E>
 E is the type of objects being stored

 Any Java class that implements this interface can do the
important things that you need for a set
 add(E element)
 contains(Object object)

 Timing comparison of hash tables and trees
 Graphs
 Graph representations

 Start Project 3
 Work on Assignment 4
 Read 4.1

	COMP 2100
	Last time
	Questions?
	Project 3
	Assignment 4
	Hash Tables
	Hash Table Implementation
	Recall: Symbol table ADT
	Chaining hash table
	Hashing function
	Contains (chaining)
	Get (chaining)
	Put (chaining)
	Maps in the Java Collections Framework
	Maps
	Concrete example
	JCF Map
	JCF implementation
	Code example
	JCF Set
	Quiz
	Upcoming
	Next time…
	Reminders

